3.2.41 \(\int \frac {(d+c^2 d x^2)^{5/2} (a+b \text {arcsinh}(c x))}{x^2} \, dx\) [141]

3.2.41.1 Optimal result
3.2.41.2 Mathematica [A] (verified)
3.2.41.3 Rubi [A] (verified)
3.2.41.4 Maple [A] (verified)
3.2.41.5 Fricas [F]
3.2.41.6 Sympy [F]
3.2.41.7 Maxima [F(-2)]
3.2.41.8 Giac [F(-2)]
3.2.41.9 Mupad [F(-1)]

3.2.41.1 Optimal result

Integrand size = 26, antiderivative size = 257 \[ \int \frac {\left (d+c^2 d x^2\right )^{5/2} (a+b \text {arcsinh}(c x))}{x^2} \, dx=-\frac {9 b c^3 d^2 x^2 \sqrt {d+c^2 d x^2}}{16 \sqrt {1+c^2 x^2}}-\frac {b c^5 d^2 x^4 \sqrt {d+c^2 d x^2}}{16 \sqrt {1+c^2 x^2}}+\frac {15}{8} c^2 d^2 x \sqrt {d+c^2 d x^2} (a+b \text {arcsinh}(c x))+\frac {5}{4} c^2 d x \left (d+c^2 d x^2\right )^{3/2} (a+b \text {arcsinh}(c x))-\frac {\left (d+c^2 d x^2\right )^{5/2} (a+b \text {arcsinh}(c x))}{x}+\frac {15 c d^2 \sqrt {d+c^2 d x^2} (a+b \text {arcsinh}(c x))^2}{16 b \sqrt {1+c^2 x^2}}+\frac {b c d^2 \sqrt {d+c^2 d x^2} \log (x)}{\sqrt {1+c^2 x^2}} \]

output
5/4*c^2*d*x*(c^2*d*x^2+d)^(3/2)*(a+b*arcsinh(c*x))-(c^2*d*x^2+d)^(5/2)*(a+ 
b*arcsinh(c*x))/x+15/8*c^2*d^2*x*(a+b*arcsinh(c*x))*(c^2*d*x^2+d)^(1/2)-9/ 
16*b*c^3*d^2*x^2*(c^2*d*x^2+d)^(1/2)/(c^2*x^2+1)^(1/2)-1/16*b*c^5*d^2*x^4* 
(c^2*d*x^2+d)^(1/2)/(c^2*x^2+1)^(1/2)+15/16*c*d^2*(a+b*arcsinh(c*x))^2*(c^ 
2*d*x^2+d)^(1/2)/b/(c^2*x^2+1)^(1/2)+b*c*d^2*ln(x)*(c^2*d*x^2+d)^(1/2)/(c^ 
2*x^2+1)^(1/2)
 
3.2.41.2 Mathematica [A] (verified)

Time = 1.33 (sec) , antiderivative size = 270, normalized size of antiderivative = 1.05 \[ \int \frac {\left (d+c^2 d x^2\right )^{5/2} (a+b \text {arcsinh}(c x))}{x^2} \, dx=\frac {1}{128} d^2 \left (\frac {16 a \sqrt {d+c^2 d x^2} \left (-8+9 c^2 x^2+2 c^4 x^4\right )}{x}+\frac {64 b \sqrt {d+c^2 d x^2} \left (-2 \sqrt {1+c^2 x^2} \text {arcsinh}(c x)+c x \text {arcsinh}(c x)^2+2 c x \log (c x)\right )}{x \sqrt {1+c^2 x^2}}+240 a c \sqrt {d} \log \left (c d x+\sqrt {d} \sqrt {d+c^2 d x^2}\right )+\frac {32 b c \sqrt {d+c^2 d x^2} (-\cosh (2 \text {arcsinh}(c x))+2 \text {arcsinh}(c x) (\text {arcsinh}(c x)+\sinh (2 \text {arcsinh}(c x))))}{\sqrt {1+c^2 x^2}}-\frac {b c \sqrt {d+c^2 d x^2} \left (8 \text {arcsinh}(c x)^2+\cosh (4 \text {arcsinh}(c x))-4 \text {arcsinh}(c x) \sinh (4 \text {arcsinh}(c x))\right )}{\sqrt {1+c^2 x^2}}\right ) \]

input
Integrate[((d + c^2*d*x^2)^(5/2)*(a + b*ArcSinh[c*x]))/x^2,x]
 
output
(d^2*((16*a*Sqrt[d + c^2*d*x^2]*(-8 + 9*c^2*x^2 + 2*c^4*x^4))/x + (64*b*Sq 
rt[d + c^2*d*x^2]*(-2*Sqrt[1 + c^2*x^2]*ArcSinh[c*x] + c*x*ArcSinh[c*x]^2 
+ 2*c*x*Log[c*x]))/(x*Sqrt[1 + c^2*x^2]) + 240*a*c*Sqrt[d]*Log[c*d*x + Sqr 
t[d]*Sqrt[d + c^2*d*x^2]] + (32*b*c*Sqrt[d + c^2*d*x^2]*(-Cosh[2*ArcSinh[c 
*x]] + 2*ArcSinh[c*x]*(ArcSinh[c*x] + Sinh[2*ArcSinh[c*x]])))/Sqrt[1 + c^2 
*x^2] - (b*c*Sqrt[d + c^2*d*x^2]*(8*ArcSinh[c*x]^2 + Cosh[4*ArcSinh[c*x]] 
- 4*ArcSinh[c*x]*Sinh[4*ArcSinh[c*x]]))/Sqrt[1 + c^2*x^2]))/128
 
3.2.41.3 Rubi [A] (verified)

Time = 0.89 (sec) , antiderivative size = 289, normalized size of antiderivative = 1.12, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.385, Rules used = {6222, 243, 49, 2009, 6201, 244, 2009, 6200, 15, 6198}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\left (c^2 d x^2+d\right )^{5/2} (a+b \text {arcsinh}(c x))}{x^2} \, dx\)

\(\Big \downarrow \) 6222

\(\displaystyle 5 c^2 d \int \left (c^2 d x^2+d\right )^{3/2} (a+b \text {arcsinh}(c x))dx+\frac {b c d^2 \sqrt {c^2 d x^2+d} \int \frac {\left (c^2 x^2+1\right )^2}{x}dx}{\sqrt {c^2 x^2+1}}-\frac {\left (c^2 d x^2+d\right )^{5/2} (a+b \text {arcsinh}(c x))}{x}\)

\(\Big \downarrow \) 243

\(\displaystyle 5 c^2 d \int \left (c^2 d x^2+d\right )^{3/2} (a+b \text {arcsinh}(c x))dx+\frac {b c d^2 \sqrt {c^2 d x^2+d} \int \frac {\left (c^2 x^2+1\right )^2}{x^2}dx^2}{2 \sqrt {c^2 x^2+1}}-\frac {\left (c^2 d x^2+d\right )^{5/2} (a+b \text {arcsinh}(c x))}{x}\)

\(\Big \downarrow \) 49

\(\displaystyle 5 c^2 d \int \left (c^2 d x^2+d\right )^{3/2} (a+b \text {arcsinh}(c x))dx+\frac {b c d^2 \sqrt {c^2 d x^2+d} \int \left (x^2 c^4+2 c^2+\frac {1}{x^2}\right )dx^2}{2 \sqrt {c^2 x^2+1}}-\frac {\left (c^2 d x^2+d\right )^{5/2} (a+b \text {arcsinh}(c x))}{x}\)

\(\Big \downarrow \) 2009

\(\displaystyle 5 c^2 d \int \left (c^2 d x^2+d\right )^{3/2} (a+b \text {arcsinh}(c x))dx-\frac {\left (c^2 d x^2+d\right )^{5/2} (a+b \text {arcsinh}(c x))}{x}+\frac {b c d^2 \sqrt {c^2 d x^2+d} \left (\frac {c^4 x^4}{2}+2 c^2 x^2+\log \left (x^2\right )\right )}{2 \sqrt {c^2 x^2+1}}\)

\(\Big \downarrow \) 6201

\(\displaystyle 5 c^2 d \left (\frac {3}{4} d \int \sqrt {c^2 d x^2+d} (a+b \text {arcsinh}(c x))dx-\frac {b c d \sqrt {c^2 d x^2+d} \int x \left (c^2 x^2+1\right )dx}{4 \sqrt {c^2 x^2+1}}+\frac {1}{4} x \left (c^2 d x^2+d\right )^{3/2} (a+b \text {arcsinh}(c x))\right )-\frac {\left (c^2 d x^2+d\right )^{5/2} (a+b \text {arcsinh}(c x))}{x}+\frac {b c d^2 \sqrt {c^2 d x^2+d} \left (\frac {c^4 x^4}{2}+2 c^2 x^2+\log \left (x^2\right )\right )}{2 \sqrt {c^2 x^2+1}}\)

\(\Big \downarrow \) 244

\(\displaystyle 5 c^2 d \left (\frac {3}{4} d \int \sqrt {c^2 d x^2+d} (a+b \text {arcsinh}(c x))dx-\frac {b c d \sqrt {c^2 d x^2+d} \int \left (c^2 x^3+x\right )dx}{4 \sqrt {c^2 x^2+1}}+\frac {1}{4} x \left (c^2 d x^2+d\right )^{3/2} (a+b \text {arcsinh}(c x))\right )-\frac {\left (c^2 d x^2+d\right )^{5/2} (a+b \text {arcsinh}(c x))}{x}+\frac {b c d^2 \sqrt {c^2 d x^2+d} \left (\frac {c^4 x^4}{2}+2 c^2 x^2+\log \left (x^2\right )\right )}{2 \sqrt {c^2 x^2+1}}\)

\(\Big \downarrow \) 2009

\(\displaystyle 5 c^2 d \left (\frac {3}{4} d \int \sqrt {c^2 d x^2+d} (a+b \text {arcsinh}(c x))dx+\frac {1}{4} x \left (c^2 d x^2+d\right )^{3/2} (a+b \text {arcsinh}(c x))-\frac {b c d \left (\frac {c^2 x^4}{4}+\frac {x^2}{2}\right ) \sqrt {c^2 d x^2+d}}{4 \sqrt {c^2 x^2+1}}\right )-\frac {\left (c^2 d x^2+d\right )^{5/2} (a+b \text {arcsinh}(c x))}{x}+\frac {b c d^2 \sqrt {c^2 d x^2+d} \left (\frac {c^4 x^4}{2}+2 c^2 x^2+\log \left (x^2\right )\right )}{2 \sqrt {c^2 x^2+1}}\)

\(\Big \downarrow \) 6200

\(\displaystyle 5 c^2 d \left (\frac {3}{4} d \left (\frac {\sqrt {c^2 d x^2+d} \int \frac {a+b \text {arcsinh}(c x)}{\sqrt {c^2 x^2+1}}dx}{2 \sqrt {c^2 x^2+1}}-\frac {b c \sqrt {c^2 d x^2+d} \int xdx}{2 \sqrt {c^2 x^2+1}}+\frac {1}{2} x \sqrt {c^2 d x^2+d} (a+b \text {arcsinh}(c x))\right )+\frac {1}{4} x \left (c^2 d x^2+d\right )^{3/2} (a+b \text {arcsinh}(c x))-\frac {b c d \left (\frac {c^2 x^4}{4}+\frac {x^2}{2}\right ) \sqrt {c^2 d x^2+d}}{4 \sqrt {c^2 x^2+1}}\right )-\frac {\left (c^2 d x^2+d\right )^{5/2} (a+b \text {arcsinh}(c x))}{x}+\frac {b c d^2 \sqrt {c^2 d x^2+d} \left (\frac {c^4 x^4}{2}+2 c^2 x^2+\log \left (x^2\right )\right )}{2 \sqrt {c^2 x^2+1}}\)

\(\Big \downarrow \) 15

\(\displaystyle 5 c^2 d \left (\frac {3}{4} d \left (\frac {\sqrt {c^2 d x^2+d} \int \frac {a+b \text {arcsinh}(c x)}{\sqrt {c^2 x^2+1}}dx}{2 \sqrt {c^2 x^2+1}}+\frac {1}{2} x \sqrt {c^2 d x^2+d} (a+b \text {arcsinh}(c x))-\frac {b c x^2 \sqrt {c^2 d x^2+d}}{4 \sqrt {c^2 x^2+1}}\right )+\frac {1}{4} x \left (c^2 d x^2+d\right )^{3/2} (a+b \text {arcsinh}(c x))-\frac {b c d \left (\frac {c^2 x^4}{4}+\frac {x^2}{2}\right ) \sqrt {c^2 d x^2+d}}{4 \sqrt {c^2 x^2+1}}\right )-\frac {\left (c^2 d x^2+d\right )^{5/2} (a+b \text {arcsinh}(c x))}{x}+\frac {b c d^2 \sqrt {c^2 d x^2+d} \left (\frac {c^4 x^4}{2}+2 c^2 x^2+\log \left (x^2\right )\right )}{2 \sqrt {c^2 x^2+1}}\)

\(\Big \downarrow \) 6198

\(\displaystyle -\frac {\left (c^2 d x^2+d\right )^{5/2} (a+b \text {arcsinh}(c x))}{x}+5 c^2 d \left (\frac {1}{4} x \left (c^2 d x^2+d\right )^{3/2} (a+b \text {arcsinh}(c x))+\frac {3}{4} d \left (\frac {1}{2} x \sqrt {c^2 d x^2+d} (a+b \text {arcsinh}(c x))+\frac {\sqrt {c^2 d x^2+d} (a+b \text {arcsinh}(c x))^2}{4 b c \sqrt {c^2 x^2+1}}-\frac {b c x^2 \sqrt {c^2 d x^2+d}}{4 \sqrt {c^2 x^2+1}}\right )-\frac {b c d \left (\frac {c^2 x^4}{4}+\frac {x^2}{2}\right ) \sqrt {c^2 d x^2+d}}{4 \sqrt {c^2 x^2+1}}\right )+\frac {b c d^2 \sqrt {c^2 d x^2+d} \left (\frac {c^4 x^4}{2}+2 c^2 x^2+\log \left (x^2\right )\right )}{2 \sqrt {c^2 x^2+1}}\)

input
Int[((d + c^2*d*x^2)^(5/2)*(a + b*ArcSinh[c*x]))/x^2,x]
 
output
-(((d + c^2*d*x^2)^(5/2)*(a + b*ArcSinh[c*x]))/x) + 5*c^2*d*(-1/4*(b*c*d*S 
qrt[d + c^2*d*x^2]*(x^2/2 + (c^2*x^4)/4))/Sqrt[1 + c^2*x^2] + (x*(d + c^2* 
d*x^2)^(3/2)*(a + b*ArcSinh[c*x]))/4 + (3*d*(-1/4*(b*c*x^2*Sqrt[d + c^2*d* 
x^2])/Sqrt[1 + c^2*x^2] + (x*Sqrt[d + c^2*d*x^2]*(a + b*ArcSinh[c*x]))/2 + 
 (Sqrt[d + c^2*d*x^2]*(a + b*ArcSinh[c*x])^2)/(4*b*c*Sqrt[1 + c^2*x^2])))/ 
4) + (b*c*d^2*Sqrt[d + c^2*d*x^2]*(2*c^2*x^2 + (c^4*x^4)/2 + Log[x^2]))/(2 
*Sqrt[1 + c^2*x^2])
 

3.2.41.3.1 Defintions of rubi rules used

rule 15
Int[(a_.)*(x_)^(m_.), x_Symbol] :> Simp[a*(x^(m + 1)/(m + 1)), x] /; FreeQ[ 
{a, m}, x] && NeQ[m, -1]
 

rule 49
Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int 
[ExpandIntegrand[(a + b*x)^m*(c + d*x)^n, x], x] /; FreeQ[{a, b, c, d}, x] 
&& IGtQ[m, 0] && IGtQ[m + n + 2, 0]
 

rule 243
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[1/2   Subst[In 
t[x^((m - 1)/2)*(a + b*x)^p, x], x, x^2], x] /; FreeQ[{a, b, m, p}, x] && I 
ntegerQ[(m - 1)/2]
 

rule 244
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_.), x_Symbol] :> Int[Expand 
Integrand[(c*x)^m*(a + b*x^2)^p, x], x] /; FreeQ[{a, b, c, m}, x] && IGtQ[p 
, 0]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 6198
Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)/Sqrt[(d_) + (e_.)*(x_)^2], x_ 
Symbol] :> Simp[(1/(b*c*(n + 1)))*Simp[Sqrt[1 + c^2*x^2]/Sqrt[d + e*x^2]]*( 
a + b*ArcSinh[c*x])^(n + 1), x] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[e, c 
^2*d] && NeQ[n, -1]
 

rule 6200
Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*Sqrt[(d_) + (e_.)*(x_)^2], x_ 
Symbol] :> Simp[x*Sqrt[d + e*x^2]*((a + b*ArcSinh[c*x])^n/2), x] + (Simp[(1 
/2)*Simp[Sqrt[d + e*x^2]/Sqrt[1 + c^2*x^2]]   Int[(a + b*ArcSinh[c*x])^n/Sq 
rt[1 + c^2*x^2], x], x] - Simp[b*c*(n/2)*Simp[Sqrt[d + e*x^2]/Sqrt[1 + c^2* 
x^2]]   Int[x*(a + b*ArcSinh[c*x])^(n - 1), x], x]) /; FreeQ[{a, b, c, d, e 
}, x] && EqQ[e, c^2*d] && GtQ[n, 0]
 

rule 6201
Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*((d_) + (e_.)*(x_)^2)^(p_.), 
x_Symbol] :> Simp[x*(d + e*x^2)^p*((a + b*ArcSinh[c*x])^n/(2*p + 1)), x] + 
(Simp[2*d*(p/(2*p + 1))   Int[(d + e*x^2)^(p - 1)*(a + b*ArcSinh[c*x])^n, x 
], x] - Simp[b*c*(n/(2*p + 1))*Simp[(d + e*x^2)^p/(1 + c^2*x^2)^p]   Int[x* 
(1 + c^2*x^2)^(p - 1/2)*(a + b*ArcSinh[c*x])^(n - 1), x], x]) /; FreeQ[{a, 
b, c, d, e}, x] && EqQ[e, c^2*d] && GtQ[n, 0] && GtQ[p, 0]
 

rule 6222
Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*((d_) + (e_ 
.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(f*x)^(m + 1)*(d + e*x^2)^p*((a + b*Arc 
Sinh[c*x])^n/(f*(m + 1))), x] + (-Simp[2*e*(p/(f^2*(m + 1)))   Int[(f*x)^(m 
 + 2)*(d + e*x^2)^(p - 1)*(a + b*ArcSinh[c*x])^n, x], x] - Simp[b*c*(n/(f*( 
m + 1)))*Simp[(d + e*x^2)^p/(1 + c^2*x^2)^p]   Int[(f*x)^(m + 1)*(1 + c^2*x 
^2)^(p - 1/2)*(a + b*ArcSinh[c*x])^(n - 1), x], x]) /; FreeQ[{a, b, c, d, e 
, f}, x] && EqQ[e, c^2*d] && GtQ[n, 0] && GtQ[p, 0] && LtQ[m, -1]
 
3.2.41.4 Maple [A] (verified)

Time = 0.20 (sec) , antiderivative size = 285, normalized size of antiderivative = 1.11

method result size
default \(-\frac {a \left (c^{2} d \,x^{2}+d \right )^{\frac {7}{2}}}{d x}+a \,c^{2} x \left (c^{2} d \,x^{2}+d \right )^{\frac {5}{2}}+\frac {5 \left (c^{2} d \,x^{2}+d \right )^{\frac {3}{2}} a \,c^{2} d x}{4}+\frac {15 a \,d^{2} \sqrt {c^{2} d \,x^{2}+d}\, c^{2} x}{8}+\frac {15 a \,c^{2} d^{3} \ln \left (\frac {c^{2} d x}{\sqrt {c^{2} d}}+\sqrt {c^{2} d \,x^{2}+d}\right )}{8 \sqrt {c^{2} d}}+\frac {b \sqrt {d \left (c^{2} x^{2}+1\right )}\, \left (32 \,\operatorname {arcsinh}\left (c x \right ) \sqrt {c^{2} x^{2}+1}\, x^{4} c^{4}-8 c^{5} x^{5}+144 \,\operatorname {arcsinh}\left (c x \right ) \sqrt {c^{2} x^{2}+1}\, x^{2} c^{2}-72 c^{3} x^{3}+120 \operatorname {arcsinh}\left (c x \right )^{2} x c -128 \,\operatorname {arcsinh}\left (c x \right ) c x +128 \ln \left (\left (c x +\sqrt {c^{2} x^{2}+1}\right )^{2}-1\right ) x c -128 \,\operatorname {arcsinh}\left (c x \right ) \sqrt {c^{2} x^{2}+1}-33 c x \right ) d^{2}}{128 \sqrt {c^{2} x^{2}+1}\, x}\) \(285\)
parts \(-\frac {a \left (c^{2} d \,x^{2}+d \right )^{\frac {7}{2}}}{d x}+a \,c^{2} x \left (c^{2} d \,x^{2}+d \right )^{\frac {5}{2}}+\frac {5 \left (c^{2} d \,x^{2}+d \right )^{\frac {3}{2}} a \,c^{2} d x}{4}+\frac {15 a \,d^{2} \sqrt {c^{2} d \,x^{2}+d}\, c^{2} x}{8}+\frac {15 a \,c^{2} d^{3} \ln \left (\frac {c^{2} d x}{\sqrt {c^{2} d}}+\sqrt {c^{2} d \,x^{2}+d}\right )}{8 \sqrt {c^{2} d}}+\frac {b \sqrt {d \left (c^{2} x^{2}+1\right )}\, \left (32 \,\operatorname {arcsinh}\left (c x \right ) \sqrt {c^{2} x^{2}+1}\, x^{4} c^{4}-8 c^{5} x^{5}+144 \,\operatorname {arcsinh}\left (c x \right ) \sqrt {c^{2} x^{2}+1}\, x^{2} c^{2}-72 c^{3} x^{3}+120 \operatorname {arcsinh}\left (c x \right )^{2} x c -128 \,\operatorname {arcsinh}\left (c x \right ) c x +128 \ln \left (\left (c x +\sqrt {c^{2} x^{2}+1}\right )^{2}-1\right ) x c -128 \,\operatorname {arcsinh}\left (c x \right ) \sqrt {c^{2} x^{2}+1}-33 c x \right ) d^{2}}{128 \sqrt {c^{2} x^{2}+1}\, x}\) \(285\)

input
int((c^2*d*x^2+d)^(5/2)*(a+b*arcsinh(c*x))/x^2,x,method=_RETURNVERBOSE)
 
output
-a/d/x*(c^2*d*x^2+d)^(7/2)+a*c^2*x*(c^2*d*x^2+d)^(5/2)+5/4*(c^2*d*x^2+d)^( 
3/2)*a*c^2*d*x+15/8*a*d^2*(c^2*d*x^2+d)^(1/2)*c^2*x+15/8*a*c^2*d^3*ln(c^2* 
d*x/(c^2*d)^(1/2)+(c^2*d*x^2+d)^(1/2))/(c^2*d)^(1/2)+1/128*b*(d*(c^2*x^2+1 
))^(1/2)/(c^2*x^2+1)^(1/2)/x*(32*arcsinh(c*x)*(c^2*x^2+1)^(1/2)*x^4*c^4-8* 
c^5*x^5+144*arcsinh(c*x)*(c^2*x^2+1)^(1/2)*x^2*c^2-72*c^3*x^3+120*arcsinh( 
c*x)^2*x*c-128*arcsinh(c*x)*c*x+128*ln((c*x+(c^2*x^2+1)^(1/2))^2-1)*x*c-12 
8*arcsinh(c*x)*(c^2*x^2+1)^(1/2)-33*c*x)*d^2
 
3.2.41.5 Fricas [F]

\[ \int \frac {\left (d+c^2 d x^2\right )^{5/2} (a+b \text {arcsinh}(c x))}{x^2} \, dx=\int { \frac {{\left (c^{2} d x^{2} + d\right )}^{\frac {5}{2}} {\left (b \operatorname {arsinh}\left (c x\right ) + a\right )}}{x^{2}} \,d x } \]

input
integrate((c^2*d*x^2+d)^(5/2)*(a+b*arcsinh(c*x))/x^2,x, algorithm="fricas" 
)
 
output
integral((a*c^4*d^2*x^4 + 2*a*c^2*d^2*x^2 + a*d^2 + (b*c^4*d^2*x^4 + 2*b*c 
^2*d^2*x^2 + b*d^2)*arcsinh(c*x))*sqrt(c^2*d*x^2 + d)/x^2, x)
 
3.2.41.6 Sympy [F]

\[ \int \frac {\left (d+c^2 d x^2\right )^{5/2} (a+b \text {arcsinh}(c x))}{x^2} \, dx=\int \frac {\left (d \left (c^{2} x^{2} + 1\right )\right )^{\frac {5}{2}} \left (a + b \operatorname {asinh}{\left (c x \right )}\right )}{x^{2}}\, dx \]

input
integrate((c**2*d*x**2+d)**(5/2)*(a+b*asinh(c*x))/x**2,x)
 
output
Integral((d*(c**2*x**2 + 1))**(5/2)*(a + b*asinh(c*x))/x**2, x)
 
3.2.41.7 Maxima [F(-2)]

Exception generated. \[ \int \frac {\left (d+c^2 d x^2\right )^{5/2} (a+b \text {arcsinh}(c x))}{x^2} \, dx=\text {Exception raised: RuntimeError} \]

input
integrate((c^2*d*x^2+d)^(5/2)*(a+b*arcsinh(c*x))/x^2,x, algorithm="maxima" 
)
 
output
Exception raised: RuntimeError >> ECL says: expt: undefined: 0 to a negati 
ve exponent.
 
3.2.41.8 Giac [F(-2)]

Exception generated. \[ \int \frac {\left (d+c^2 d x^2\right )^{5/2} (a+b \text {arcsinh}(c x))}{x^2} \, dx=\text {Exception raised: TypeError} \]

input
integrate((c^2*d*x^2+d)^(5/2)*(a+b*arcsinh(c*x))/x^2,x, algorithm="giac")
 
output
Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:sym2poly/r2sym(const gen & e,const 
index_m & i,const vecteur & l) Error: Bad Argument Value
 
3.2.41.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\left (d+c^2 d x^2\right )^{5/2} (a+b \text {arcsinh}(c x))}{x^2} \, dx=\int \frac {\left (a+b\,\mathrm {asinh}\left (c\,x\right )\right )\,{\left (d\,c^2\,x^2+d\right )}^{5/2}}{x^2} \,d x \]

input
int(((a + b*asinh(c*x))*(d + c^2*d*x^2)^(5/2))/x^2,x)
 
output
int(((a + b*asinh(c*x))*(d + c^2*d*x^2)^(5/2))/x^2, x)